A “plug-and-play” approach to the preparation of transparent luminescent hybrid materials based on poly(methyl methacrylate), a calix[4]arene cross-linking agent, and terbium ions†

Christopher R. Driscoll, Brodie L. Reid, Matthew J. McIldowie, Sara Muzzioli, Gareth L. Nealon, Brian W. Skelton, Stefano Stagni, David H. Brown, Massimiliano Massi and Mark I. Ogden*

Received 14th December 2010, Accepted 4th February 2011
DOI: 10.1039/c0cc05570k

A novel methodology to prepare transparent luminescent hybrid materials is reported. Using a calixarene ionophore as a PMMA cross-linker avoids problems, such as phase segregation, and produces a polymer monolith that can be loaded with the metal ion required for luminescence post-synthesis. This approach is versatile and will simplify the production of such materials.

Hybrid inorganic–organic materials offer the advantageous combination of the functional properties of the guest metal centres, such as luminescence and/or magnetism, with the thermal and mechanical properties of the host polymeric matrix.1 Particular attention has been devoted in the last decade to the preparation of transparent polymeric materials exhibiting luminescent properties,2 as these find applications in a variety of fields, viz. light emitting devices, optical displays, tuneable lasers, and sensors. Amongst the various classes of potential inorganic guests, luminescent lanthanoid compounds are particularly attractive due to their line-like quasi-monochromatic emissions in the visible or infrared spectra,3,4 and their potential application in non-linear optics,5 as and as a result they have been used for the fabrication of such hybrid materials.6-7 We have also recently shown that lanthanoid hydroxo clusters can be used for the fabrication of transparent, reinforced, emissive materials.8 The challenge in preparing these types of hybrid materials is the tendency towards phase segregation of the inorganic component from the organic polymer.9 This undesired phenomenon leads to a loss of homogeneity and transparency, significantly decreasing the quality of the final material. Various strategies have been proposed to overcome this,6 including: (i) functionalisation of the lanthanoid complexes and nanoparticles with suitable solubilising groups; (ii) direct attachment of these compounds, via covalent cross-linking, to the polymeric chains.

As part of our work focused on the preparation of transparent hybrid materials, we have turned our attention to the use of calix[4]arene sensitised lanthanoid complexes and their incorporation into polymeric matrices. Calixarene-containing polymers are not common, but have been accessed by functionalisation of a pre-formed polymeric material,10-13 and by the reaction of a calixarene monomer.14-23 The bulk of this work focuses on using the well known behaviour of the calixarenes as receptors for the absorption of target species including cations,13,17,18 anions,11 biological molecules,10 and neutral organic species.14,16

We have exploited the allyl groups at the upper rim of the calix[4]arene 1H (Fig. 1) to form poly(methyl methacrylate) (PMMA) cross-linked with luminescent lanthanoid complexes of 1. The advantage of our procedure is that it does not require the pre-formation of the calix[4]arene metal complex, and instead introduces a two-step procedure to obtain these hybrid materials. As depicted in Scheme 1, firstly, methyl methacrylate (MMA) is polymerised in the presence of cross-linker 1H. Secondly, the cross-linked polymer is swollen with a solution containing a suitable lanthanoid salt, which can penetrate the PMMA material and coordinate to the calix[4]arene ligands within. Subsequent swelling (i.e. washing) steps and

Fig. 1 The structures of the allyl functionalised (1H) and p-tert-butyl (2H) calix[4]arene trisamide ligands.
the removal of the solvent yields the desired luminescent hybrid material. This methodology resolves issues related to the solubility of the inorganic precursor (or calix[4]arene metal complex) in the neat monomer or solvent system, as the organic, soluble calix[4]arene is polymerised first, and then complexation can be performed using a second solvent system that is more suitable for the metal complexes. Moreover, the cross-linked nature of the matrix guarantees that the original shape of the material is preserved. To illustrate this procedure, we have prepared PMMA matrices cross-linked by Tb\(^{3+}\) complexes of 1, and compared the emission profile of these materials with those of the analogous Tb\(^{3+}\) complex with calix[4]arene 2H.

The p-tert-butylcalix[4]arene trisamide 2H was prepared according to the literature,\(^{24}\) while 1H was prepared following the same alkylation procedure,\(^{\dagger}\) with the allyl functionalised calix[4]arene.\(^{25}\) Cross-linked PMMA samples were obtained by bulk radical polymerisation of neat MMA with 1H (0.2\% mol. eq.), using azobisisobutyronitrile (0.13\% mol. eq.) as the initiator, following the previously developed methodology.\(^{8,26}\) Since 1H is completely soluble in MMA, the amount of cross-linking agent in the reaction mixture can be easily varied without phase segregation occurring. At the end of the procedure, the resulting PMMA monoliths were swollen in a 1 : 1 ethanol–dichloromethane solution (4 mL) containing Tb(NO\(_3\))\(_3\) (DMSO)\(_4\). The DMSO-solvated Tb nitrate was chosen as an anhydrous metal source to minimise the potential for vibrational quenching caused by H\(_2\)O molecules coordinated to the metal centres in the final product.\(^{27}\) A large excess of Tb relative to 1H in the monolith was used to favour complexation of the available calix[4]arene sites within the material.\(^{\dagger}\) After the complexation step, the swollen monoliths were dried until the complexation was complete, and the material returned to its original size. Subsequent swelling procedures were then performed twice with a 1 : 1 ethanol–dichloromethane mixture and then with ethanol to facilitate the removal of any unbound Tb salt. The fact that the hybrid material swelled in the presence of these solvents (the volume increased by ca. 180\%), rather than dissolved, confirms that 1H has covalently cross-linked the PMMA chains.

To assess the photophysical properties of the final material, the monoliths were directly positioned on the cuvette holder of the fluorimeter. The materials were then excited at \(\lambda_{ex} = 320\) nm, exhibiting the typical green emission of trivalent Tb. To determine if the Tb cations had coordinated to the calix[4]arene sites within the material, the emission profile of the cross-linked PMMA hybrid was compared to the emission spectrum of a 1 : 1 ethanol–dichloromethane solution containing equimolar quantities of 2H and Tb(NO\(_3\))\(_3\) (DMSO)\(_4\). The spectra are shown in Fig. 2 and display the characteristic Tb\(^{3+}\) bands corresponding to the \(3\)D\(_4\) \(\rightarrow\) \(3\)F\(_J\) transitions, with \(J = 6, 5\), characterised by a typically long emission lifetime (\(\tau = 0.774\) ms).\(^3\) The most intense peak is the green-centred \(3\)D\(_4\) \(\rightarrow\) \(3\)F\(_6\). Both the \(3\)D\(_4\) \(\rightarrow\) \(3\)F\(_6\) and \(3\)D\(_4\) \(\rightarrow\) \(3\)F\(_5\) bands exhibit multiple peaks originating from the \(2\)J \(+\) 1 splitting of both the excited and ground states.\(^{28}\) Notably, the emission profiles of the Tb-containing PMMA monoliths improved after the swelling stage to remove unbound Tb salts, which may be due to a reduction in concentration quenching caused by excess Tb.\(^{29}\) The emission profile of the Tb containing cross-linked PMMA monoliths is remarkably similar to the emission profile in solution, even to the extent of the fine structure exhibited by the two higher energy peaks (\(\text{cm}^{-1}, J = 6, 5\)). This evidence strongly supports the conclusion that within the material, light emission of the Tb centres is originating by means of an antenna effect of the calix[4]arene, which efficiently transfers the energy of its triplet excited state to the \(3\)D\(_4\) state of the Tb\(^{3+}\). This was confirmed by conducting a series of control experiments. No emission was detected by excitation at \(\lambda_{ex} = 320\) nm of an ethanolic solution of Tb(NO\(_3\))\(_3\) (DMSO)\(_4\). No light emission was observed when a PMMA sample, cross-linked with ethylene glycol dimethacrylate, was swollen with a Tb(NO\(_3\))\(_3\) (DMSO)\(_4\) solution (Fig. 3). Finally, the excitation spectrum of the polymer cross-linked by 1H containing Tb cations shows a maximum around 320 nm, with a peak shape similar to the absorption profile of 1H (Fig. S8).\(^{\dagger}\)

Having confirmed that the calix[4]arene chromophore is essential to observe the Tb-centred emission, we investigated the impact of small changes in the coordination environment of Tb cations bound to the calix[4]arene ligand on the fine structure of the emission spectra. In particular, we have compared the emission originating from the complexation of Tb(NO\(_3\))\(_3\) (DMSO)\(_4\) to 1H with solutions containing equimolar quantities of: (i) TbCl\(_3\) (H\(_2\)O)\(_6\) and 1H; (ii) Tb(NO\(_3\))\(_3\) (DMSO)\(_4\) and 2H; (iii) TbCl\(_3\) (H\(_2\)O)\(_6\) and 2H; (iv) Tb(ClO\(_4\))\(_3\) (DMSO)\(_4\) and 2H. For the last complex, we were also able to isolate single crystals suitable for X-ray diffraction\(^\dagger\) (Fig. 4).

This shows an octa-coordinated Tb centre bound to phenolate, ether, carbonyl and DMSO O atoms in a manner similar to that reported previously.\(^{30,31}\) By comparing all of the emission spectra, it is evident that differences in the chemical nature of the upper rim do not affect the Tb-centred...
Fig. 3 A comparison of the hybrid materials cross-linked with either ethylene glycol dimethacrylate (left) or HH (right) and swollen in the presence of Tb(NO$_3$)$_3$(DMSO)$_4$. Picture A was taken under white light, whereas B was taken under UV irradiation.

emission (see Figs S4 and S6†). The profiles obtained from the Tb(NO$_3$)$_3$(DMSO)$_4$ solutions, when the 5D_4 excited state of Tb is populated either by energy transfer from 1 or 2, are virtually identical. In contrast, emission profiles with a different fine structure, especially related to the $^5D_4 \rightarrow ^7F_6$ and $^5D_4 \rightarrow ^7F_5$ bands, are obtained when Tb chloride or perchlorate salts are substituted for the Tb(NO$_3$)$_3$(DMSO)$_4$. These results indicate that the coordination spheres of the two emissive complexes in Fig. 2 are very similar, further confirming that the Tb ions are coordinated to the cross-linking calix[4]arenes during the swelling stage. These results also indicate that emission profiles of the trisamide calix[4]arene complexes may be fine-tuned by varying the co-ligand (e.g. DMSO in Fig. 4).

In conclusion, we have presented a novel methodology for the preparation of transparent and luminescent hybrid inorganic–organic materials. The two-step process involves firstly the cross-linking of the PMMA chains by copolymerisation of MMA in the presence of the allyl-functionalised calix[4]arene. Secondly, the swelling step in the presence of Tb salts introduces the luminescent functionalities within the hybrid material. This methodology overcomes issues related to the solubility of the inorganic component in the polymerisation system, thus avoiding phase segregation and loss of transparency. Moreover, as the ligand itself is generally soluble in organic mixtures, this allows for fine-tuning of the photophysical and mechanical properties of the final material by variation of the concentration of the calix[4]arene. Current investigations are focused on the elaboration of this “plug-and-play” methodology to include metals with other properties (e.g. magnetism and other emission profiles) and the use of different cross-linking ligands.

The authors wish to thank the Australian Research Council for the APD Fellowship (DP0985481) (to MM) and Curtin University for a Research and Teaching Fellowship (to DHB). A/Prof Simon Lewis is kindly acknowledged for assistance with photography of the monoliths.

Notes and references
† A base is often added to enhance deprotonation of the phenol group in such complexation experiments, although complexation also occurs in the absence of base. Here, base was not added to ensure hydroxides were not precipitated thus reducing the transparency of the polymer monolith. Solution phase fluorescence measurements showed that complexation occurred in the presence and absence of triethylenamine, although complexation was enhanced with added base (Fig. S5†).